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(Cook’s Theorem): 
- Theorem 9.1: SAT is NP-Complete. 

 
Proof: 

1. Proof that SAT ∈ NPC: 
Note: This proof was done in lecture 8. 
The certificate in this case is a truth assignment that makes the formula true. The 
verifier evaluates the formula given the certificate.  

2. Proof that ∀ L ∈ NP, L ≤P SAT: 
This part is tough because there is an infinite number of languages in NP. 
We can’t prove each language ≤P SAT. 
Instead, we need to find something that all these languages have in common to 
help prove the reduction. 
We will call this item that all the languages have in common “a handle”. 
For every language, L, in NP, the handle will be a NTM, ML, that accepts L. 
Since the languages are in NP, we know that there exists a NTM that decides it 
in polynomial time. 
 
Given ML and an input string x, where x ∈ ∑*, we will construct, in polytime,  
a function Fx s.t. x ∈ L iff Fx is satisfiable.  
We can rephrase the above statement like this: Fx is satisfiable means that there 
exists a truth assignment τ that satisfies Fx iff ML on x has an accepting 
computation. 
 
Let p(n) be a polynomial bound on the running time of ML, where n = |x|. 
This means that every computation of ML on x takes at most p(n) steps, where n 
= |x|. 
ML on x has an accepting configuration means that there exists a sequence of 
configurations C0⊢C1⊢…⊢Cl where C0 is the initial configuration, C0 = Q0x, and 
Cl is an accepting configuration. 
WLOG assume that p(n) ≥ n. (This means that the number of steps for the 
accepting computation is at least as long as the length of the input.) 
If p(n) < n, then we can just add useless steps to get p(n) ≥ n. 
If it was polynomial before, it's still polynomial. 
The tape on each Ct has at most p(n) symbols before the infinite number of blank 
symbols. 
Instead of thinking C0⊢C1⊢…⊢Cl as configurations, we will think of it as a table. 
There will be p(n)+1 rows, one row for each Ct.  
If l < p(n), I will still force the table to have p(n) + 1 rows. I will copy the last 
configuration to fill the remaining rows. 
Furthermore, there will be p(n)+2 columns. These columns will be used to 
represent the elements that are part of the configuration. 
We will put the state in the first column. 
We will put a number that represents the position of the head in the second 
column. 
We will put the p(n) symbols in the remaining p(n) columns, with one symbol per 
column. 
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Here’s a diagram of the table: 

 
The ith row in the table is just another way to represent Ci. 
We are changing the representation to make it more uniform. 
ML = (Q, Σ, Γ, δ, Q0, QA, QR) 
∀ q∈Q and ∀ t∈[0…p(n)], I will have a variable St

q, s.t. St
q = 1 iff at time t, the 

ML is in state q. St
q = 0 otherwise. 

∀ cell i∈[1…p(n)] and ∀ a∈Γ and ∀ t∈[0…p(n)], I will have a variable Ct
ia, s.t. 

Ct
ia = 1 iff at time t, cell i contains symbol a. Ct

ia = 0 otherwise. 
∀ i∈[1…p(n)] and ∀ t∈[0…p(n)], I will have a variable Ht

i, s.t. 
Ht

i = 1 iff at time t, the head of the tape is on cell i. Ht
i = 0 otherwise. 

The total number of variables is Θ(p2(n)). 
We will use groups of formulas to help create Fx. 
Group 1 (Coherence): At any time t, I cannot have: 

a. ML be in 2 different states. 
b. ML’s head cannot be in 2 different cells. 
c. Each cell cannot have 2 symbols. 

Group 2 (Start Well): At time 0, ML starts correctly. 
Group 3 (End Well): At time p(n), ML is in the accept state. 
Group 4 (Move Well): In each step from t to t + 1: 

a. Only the symbol under the head can change. 
b. The state, head position, tape contents change as per δ. 
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For Coherence: 
a. ¬(St

q ∧ St
p) ∀p ≠ q ∈ Q, ∀t ∈ [0...p(n)] 

Note: We can express the above as: ¬St
q ⋁ ¬St

p 
b. ¬(Ht

i ∧ Ht
i’) ∀i ≠ i’ ∈ [1...p(n) + 1], ∀t ∈ [0...p(n)] 

Note: We can express the above as: ¬Ht
i ⋁ ¬Ht

i 
c. ¬(Ct

ia ∧ Ct
ib) ∀a ≠ b ∈ Γ, ∀t ∈ [0...p(n)] 

Note: We can express the above as: ¬Ct
ia ⋁ ¬Ct

ib 
 
For Start Well: 
ML starts correctly means that at time 0, 

a. The state is Q0. (S0
Q0) 

b. The head is in cell 1. (H0
1) 

c. The tape is unchanged. 
(C0

iai ∀i ∈ [1...n]) ← This means at time 0, cell i contains ai for all i in 1 to 
n 
(C0

i_ ∀i ∈ [n+1...p(n)]) ← This means at time 0, cell i contains a blank 
symbol for all i in n+1 to p(n). 

 
For End Well: 
We can represent “At time p(n), ML is in the accept state.” with Sp(n)

QA. 
 
For Move Well: 

a. (Ct
ia ∧ ¬Ct+1

ia) → Ht
i ∀i ∈ [1...p(n) + 1], ∀a ∈ Γ, ∀t ∈ [0...p(n)] 

Note: We can express the above as: ¬Ct
ia ∨ Ct+1

ia ∨ Ht
i. 

b. (St
q ∧ Ht

i ∧ Ct
ia) → ∨(St+1

p ∧ Ht+1
i+d ∧ Ct+1

ib) (p, b, R) ∈ δ(q, a) 
Note: We can express the above as: 
¬St

q ∨ ¬Ht
i ∨ ¬Ct

ia ∨ (∨(St+1
p ∧ Ht+1

i+d ∧ Ct+1
ib) (p, b, R) ∈ δ(q, a)) 

 
I.e.  
d = 1 if we move right. 
d = -1 if we move to the left and are not in the leftmost cell. 
d = 0 if we move to the left and are already in the leftmost cell. 
∀p, q ∈ Q s.t. q ≠ QA, ∀i ∈ [1..p(n) + 1], ∀t ∈ [0...p(n)] 
If q is in an accept state, there is no transition outside of an accept state. 
 
If we are in QA, and there’s empty rows in the table, we get 
(St

QA ∧ Ht
i ∧ Ct

ia) → (St+1
QA ∧ Ht+1

i ∧ Ct+1
ia) ∀i ∈ [1..p(n) + 1], ∀t ∈ 

[0...p(n)], and ∀a ∈ Γ or equivalently ￢St
QA ⋁ ￢Ht

i ⋁ ￢Ct
ia) ⋁ (St+1

QA ∧ 
Ht+1

i ∧ Ct+1
ia) 

Basically, we just copy everything from the row where we reach QA to all 
the empty rows. 
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Let Fx

1, Fx
2, Fx

3, Fx
4 be formulas in groups 1-4. 

Fx = Fx
1 ∧ Fx

2 ∧ Fx
3 ∧ Fx

4 
Claim: ML accepts x iff Fx is satisfiable. 
Proof: 
(=>) 
Suppose ML accepts x. 
Then, there exists a sequence of configurations C0, C1, …, Cl s.t.  

- C0 is the initial configuration, C0 = Q0x 
- Ct ⊢ Ct+1 ∀ t∈[0..l-1] 
- Cl is the accepting configuration, Cl = Qa 
- l ≤ p(n).  

The contents of the table suggest a truth assignment that satisfies Fx. 
 
(<=) 
Suppose FX is satisfiable. 
That means that there exists a truth assignment that makes FX true. 
This truth assignment defines the rows of the table that correspond to an 
accepting computation. 
Each row corresponds to a configuration of ML. (Group 1) 
The first configuration is the initial configuration of ML on x. (Group 2) 
The last configuration is an accepting configuration. (Group 3) 
Each configuration follows from a previous by a legal move of ML. (Group 4) 
 
The reduction is polytime because the length of Fx is polynomial w.r.t |x| = n 
Group 1’s Formula is O(p3(n)). 
Group 2’s Formula is O(p(n)). 
Group 3’s Formula is O(1). 
Group 4’s Formula is O(p2(n)). 
Furthermore, each formula has size O(1). 
|Fx| = O(p3(n)) is polynomial w.r.t to |x|. 

Examples of Other NPC Problems: 
- We're going to prove that other problems, X, are NPC by showing SAT ≤p X. 
- However, before we do this we need to show that SAT is still NP C even if we restrict 

some formulas in a syntactic sense. 
- Definition: F is in Conjunctive Normal Form (CNF) iff: 

a. It is a literal. A literal is a variable or the negation of a variable. OR 
b. It is a conjunction of clauses. A clause is a literal or a disjunction of literals. 

I.e. CNF is an ∧ of ∨s, where ∨ is over variables or their negations (literals). An ∨ of 
literals is also called a clause. 
 
E.g. The following formulas are in CNF: 
￢X → Is a literal 
￢X ∧ ￢Y → Is a clause because it is a disjunction of 2 literals. 
¬x1 ∧ (x1 ∨ x2) ∧ (¬x1 ∨ ¬x3) → Is a clause because there are disjunctions of literals.  
 
E.g. The following formulas are not in CNF: 
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￢(X ∨ Y) since an OR is nested within a NOT. 
- Note: Every formula can be equivalently written as a formula in CNF. 
- CNF-SAT: 
- Theorem 9.2: CNF−SAT ∈ NPC. 

 
Proof: 
Fx is almost CNF. 
The exception is in group 4. 
We have l1 ∨ l2 ∨ l3 ∨ (l11 ∧ l12 ∧ l13)) ∨ ... ∨ (lk1 ∧ lk2 ∧ lk3)) where l represent 
literals.  
This is in DNF not CNF. 
However, using distributive laws this is logically equivalent to 

 
The size of this formula is (3k)(k+3) where k ≤  |Q||Γ|2 = O(1). 
So, (3k)(k+3) is still a constant. (3k)(k+3) = O(1). 
Put Fx in CNF as above.  
The resulting formula has size polynomial w.r.t |x|. 
Therefore, CNF−SAT ∈ NPC 

- Problem (3SAT): CNF−SAT for formulas where each clause has ≤ 3 literals. 
Theorem 9.3: 3SAT ∈ NPC 
 
Proof: 

a. Proof that 3SAT ∈ NP: 
3SAT is a specific case of SAT which is in NP. 
Hence, 3SAT is in NP. 

b. CNF−SAT ≤p 3SAT: 
Given any CNF formula F = C1 ∧ C2 ∧ ... ∧ Ck where Ci is a clause, construct 
in polytime a 3CNF formula F’ = C’1 ∧ ... ∧ C’k. 
F’ is satisfiable iff F is satisfiable. 
C’j is a 3CNF formula.  
|C’j| = O(|Cj|) 
If Cj has at most 3 literals, C’j = Cj. 
If Cj = l1 ∨ l2 ∨ … ∨ lm, where m ≥ 3, we introduce new variables z1, ..., zm−3. 
Then, let C’j = (l1 ∨ l2 ∨ z1) ∧ (ㄱz1 ∨ l3 ∨ z2) ∧ (ㄱz2 ∨ l4 ∨ z3) ∧ ... ∧  
(ㄱzm−3 ∨ lm−1 ∨ lm). 
We are using Zi to chain the li. 
C’j is satisfiable iff Cj is satisfiable. 
Hence, F’ is satisfiable iff F is satisfiable. 
|F’| = O(|F|) → CNF−SAT ≤p 3SAT 

- Fact: 2SAT ∈ P 
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- Problem (IS): 
Instance: ⟨G, k⟩ where  G = (V, E) is an undirected graph and k ∈ Z+. 
Question: Does G have an independent set V’ ⊆ V such that |V’| ≥ k? 
 
Theorem 9.4: IS ∈ NPC  
 
Proof: 

a. Proof that IS ∈ NP: 
We have done this in lecture 8. 

b. Proof that 3SAT ≤P IS: 
Given 3CNF formula F, construct (in polynomial time in |⟨F⟩|), an undirected 
graph G = (V, E) and k ∈ Z+ s.t. F is satisfiable iff G has an IS of k nodes. 
Let F = C1 ∧ ... ∧ Cm. 
Let X1, …, Xm be variables in F. 
Cj = (lj

1, lj
2, lj

3) where lj
t is a literal. 

 
E.g. 
Suppose we have the formula F = (x ∨ y ∨ ㄱz) ∧ (ㄱx ∨ y ∨ z) ∧ (x ∨ ㄱy 
∨ u) ∧ (ㄱu ∨ ㄱy ∨ ㄱz). 
For each clause construct a triangle. 

 
Selecting a node is equivalent to saying that the truth assignment for that literal is 
true.  
E.g. In the first triangle, if we choose ㄱz, we’re saying that ㄱz is true, meaning 
that z is false. 
We must restrict not being able to choose opposing literals (x and ㄱx) by 
drawing an edge between them. 
This is because by choosing x in 1 triangle and ㄱx in another triangle, we’re 
saying that we want x to be true in the first triangle and ㄱx to be true in the 
second triangle. This will cause a contradiction. 
This is shown in the picture below. 
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k = 4 is the number of clauses we have. 
 
In general, 
G = (V,E) where 

V = {Cj
1, Cj

2, Cj
3 | 1 ≤ j ≤ m} 

E = {{{Cj
1, Cj

2}, {Cj
2, Cj

3}, {Cj
3, Cj

1} | 1 ≤ j ≤ m} ⋃  
        {{Cj

t, Cj’
t’} |1 ≤ j ≠ j’ ≤ m, 1 ≤ t, t’ ≤ 3}} s.t. lj

t and lj’
t’ are opposite literals 

       of the same variable. 
k = m 
 
Claim: F is satisfiable iff G has IS of size k = m. 
 
Proof: 
(=>) 
Suppose F is satisfiable. 
Let τ be a truth assignment that satisfies F. 
τ makes true some literal, say lj

tj of every clause Cj 1 ≤ j ≤ m, 1 ≤ tj ≤ 3. 
Then {C1

t1, C2
t2, ...Cm

tm} is an IS of G of size m = k.  
They belong to different triangles and there are no edges between them. 
If there is an edge between 2 of them, say Ci

ti and Cj
tj, then they are opposite 

literals of the same variable. Hence, τ would make one of them true and the other 
false. However, we are only choosing the literal that τ makes true, so we can’t 
choose both Ci

ti and Cj
tj. Hence, there cannot be any edges between any 2  

(Cx
tx, Cy

ty) in {C1
t1, C2

t2, ...Cm
tm}. 
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(<=) 
Suppose G has an IS, V’, of size m. 
Because of the triangles, V' has exactly one node from each triangle. 
Let V’ = {C1

t1, C2
t2, ..., Cm

tm}. 
We will define truth assignment τ as: 

  
If lj

tj = x, then we make x = 1 (x = true). 
If lj

tj = ￢x, then we make x = 0 (x = false), so that ￢x is true. 
This is well-defined, meaning that there are no contradictory rules, that satisfies F 
because it solves every clause. 
 
Remains to show that construction of ⟨G,k⟩ can be done in polynomial time in 
size of ⟨F⟩. 
|V | = 3m 
|E| = 3m + 3m(m − 1) = O(m2). 
Therefore, the size of ⟨G,k⟩ is polynomial w.r.t |⟨F⟩|. 
Therefore, ⟨G,k⟩ can be constructed from ⟨F⟩ is polynomial. 
Therefore, 3SAT ≤P IS. 
Therefore, 3SAT ∈ NPC. 

- Problem (CLIQUE): 
Instance: ⟨G,k⟩ as in IS. 
Question: Does G have a clique of size k? 
A clique is a subset of nodes, V’, s.t. there exists an edge between any 2 pairs of nodes 
in V’. V’ ⊆ V. 
 
Theorem 9.5: CLIQUE is NPC. 
IS ≤P CLIQUE. 
Given G = (V, E), construct ￢G = (V, ￢E). 
￢G is the complement of G. 
￢G has an edge between 2 nodes iff G does not have an edge between those 2 nodes. 
Therefore G has an independent set iff ￢G has a clique. 

- Problem Vertex Cover (VC): 
Instance: ⟨G,k⟩ as before. 
Question: Does G have a vertex cover of size k?  
A vertex cover is a set of nodes (V’ ⊆ V) s.t. every edge has at least one endpoint in V’. 
 
Theorem 9.6: VC ∈ NPC 
G = (V, E) has an IS of size K iff G = (V, E) has a VC of size n − k, where n = |V|. 
If something is an IS, its complement must be a VC. 


