
CSCC63 Week 9 Notes
1

(Cook’s Theorem):
- Theorem 9.1:​ SAT is NP-Complete.

Proof:

1. Proof that SAT ∈ NPC:
Note:​ This proof was done in lecture 8.
The certificate in this case is a truth assignment that makes the formula true. The
verifier evaluates the formula given the certificate.

2. Proof that ∀ L ∈ NP, L ≤​P ​SAT:
This part is tough because there is an infinite number of languages in NP.
We can’t prove each language ≤​P ​SAT.
Instead, we need to find something that all these languages have in common to
help prove the reduction.
We will call this item that all the languages have in common “a handle”.
For every language, L, in NP, the handle will be a NTM, M​L​, that accepts L.
Since the languages are in NP, we know that there exists a NTM that decides it
in polynomial time.

Given M​L​ and an input string x, where x ∈ ∑*, we will construct, in polytime,
a function F​x​ s.t. x ∈ L iff F​x​ is satisfiable.
We can rephrase the above statement like this: F​x​ is satisfiable means that there
exists a truth assignment τ that satisfies F​x​ iff M​L​ on x has an accepting
computation.

Let p(n) be a polynomial bound on the running time of M​L​, where n = |x|.
This means that every computation of M​L​ on x takes at most p(n) steps, where n
= |x|.
M​L​ on x has an accepting configuration means that there exists a sequence of
configurations C0⊢C1⊢…⊢Cl where C0 is the initial configuration, C0 = Q0x, and
Cl is an accepting configuration.
WLOG assume that p(n) ≥ n. (This means that the number of steps for the
accepting computation is at least as long as the length of the input.)
If p(n) < n, then we can just add useless steps to get p(n) ≥ n.
If it was polynomial before, it's still polynomial.
The tape on each C​t​ has at most p(n) symbols before the infinite number of blank
symbols.
Instead of thinking C0⊢C1⊢…⊢Cl as configurations, we will think of it as a table.
There will be p(n)+1 rows, one row for each C​t​.
If l < p(n), I will still force the table to have p(n) + 1 rows. I will copy the last
configuration to fill the remaining rows.
Furthermore, there will be p(n)+2 columns. These columns will be used to
represent the elements that are part of the configuration.
We will put the state in the first column.
We will put a number that represents the position of the head in the second
column.
We will put the p(n) symbols in the remaining p(n) columns, with one symbol per
column.

CSCC63 Week 9 Notes
2

Here’s a diagram of the table:

The i​th​ row in the table is just another way to represent C​i​.
We are changing the representation to make it more uniform.
ML = (Q, Σ, Γ, δ, Q0, QA, QR)
∀ q∈Q and ∀ t∈[0…p(n)], I will have a variable S​t​

q​, s.t. S​t​
q​ = 1 iff at time t, the

M​L​ is in state q. S​t​
q​ = 0 otherwise.

∀ cell i∈[1…p(n)] and ∀ a∈Γ and ∀ t∈[0…p(n)], I will have a variable C​t​
ia​, s.t.

C​t​
ia​ = 1 iff at time t, cell i contains symbol a. C​t​

ia​ = 0 otherwise.
∀ i∈[1…p(n)] and ∀ t∈[0…p(n)], I will have a variable H​t​

i​, s.t.
H​t​

i​ = 1 iff at time t, the head of the tape is on cell i. H​t​
i​ = 0 otherwise.

The total number of variables is Θ(p​2​(n)).
We will use groups of formulas to help create F​x​.
Group 1 (Coherence):​ At any time t, I cannot have:

a. M​L​ be in 2 different states.
b. M​L​’s head cannot be in 2 different cells.
c. Each cell cannot have 2 symbols.

Group 2 (Start Well): ​At time 0, M​L​ starts correctly.
Group 3 (End Well):​ At time p(n), M​L​ is in the accept state.
Group 4 (Move Well):​ In each step from t to t + 1:

a. Only the symbol under the head can change.
b. The state, head position, tape contents change as per δ.

CSCC63 Week 9 Notes
3

For Coherence:
a. ¬(S​t​

q​ ∧ S​t​
p​) ∀p ≠ q ∈ Q, ∀t ∈ [0...p(n)]

Note:​ We can express the above as: ¬S​t​
q​ ⋁ ¬S​t​

p
b. ¬(H​t​

i​ ∧ H​t​
i’​) ∀i ≠ i’ ∈ [1...p(n) + 1], ∀t ∈ [0...p(n)]

Note:​ We can express the above as: ¬H​t​
i​ ⋁ ¬H​t​

i
c. ¬(C​t​

ia​ ∧ C​t​
ib​) ∀a ≠ b ∈ Γ, ∀t ∈ [0...p(n)]

Note:​ We can express the above as: ¬C​t​
ia​ ⋁ ¬C​t​

ib

For Start Well:
M​L​ starts correctly means that at time 0,

a. The state is Q0. (S​0​
Q0​)

b. The head is in cell 1. (H​0​
1​)

c. The tape is unchanged.
(C​0​

iai​ ∀i ∈ [1...n]) ← This means at time 0, cell i contains a​i​ for all i in 1 to
n
(C​0​

i_​ ∀i ∈ [n+1...p(n)]) ← This means at time 0, cell i contains a blank
symbol for all i in n+1 to p(n).

For End Well:
We can represent “At time p(n), M​L​ is in the accept state.” with S​p(n)​

QA​.

For Move Well:

a. (C​t​
ia​ ∧ ¬C​t+1​

ia​) → H​t​
i​ ∀i ∈ [1...p(n) + 1], ∀a ∈ Γ, ∀t ∈ [0...p(n)]

Note:​ We can express the above as: ¬C​t​
ia​ ∨ C​t+1​

ia​ ∨ H​t​
i​.

b. (S​t​
q​ ∧ H​t​

i​ ∧ C​t​
ia​) → ∨(S​t+1​

p​ ∧ H​t+1​
i+d ​∧ C​t+1​

ib​) (p, b, R) ∈ δ(q, a)
Note:​ We can express the above as:
¬S​t​

q​ ∨ ¬H​t​
i​ ∨ ¬C​t​

ia​ ∨ (∨(S​t+1​
p​ ∧ H​t+1​

i+d ​∧ C​t+1​
ib​) (p, b, R) ∈ δ(q, a))

I.e.
d = 1 if we move right.
d = -1 if we move to the left and are not in the leftmost cell.
d = 0 if we move to the left and are already in the leftmost cell.
∀p, q ∈ Q s.t. q ≠ QA, ∀i ∈ [1..p(n) + 1], ∀t ∈ [0...p(n)]
If q is in an accept state, there is no transition outside of an accept state.

If we are in QA, and there’s empty rows in the table, we get
(S​t​

QA​ ∧ H​t​
i​ ∧ C​t​

ia​) → (S​t+1​
QA​ ∧ H​t+1​

i​ ∧ C​t+1​
ia​) ∀i ∈ [1..p(n) + 1], ∀t ∈

[0...p(n)], and ∀a ∈ Γ or equivalently ￢S​t​
QA​ ⋁ ￢H​t​

i​ ⋁ ￢C​t​
ia​) ⋁ (S​t+1​

QA​ ∧
H​t+1​

i​ ∧ C​t+1​
ia​)

Basically, we just copy everything from the row where we reach QA to all
the empty rows.

CSCC63 Week 9 Notes
4

Let F​x​

1​, F​x​
2​, F​x​

3​, F​x​
4​ be formulas in groups 1-4.

F​x​ = F​x​
1​ ∧ F​x​

2 ​∧ F​x​
3​ ∧ F​x​

4
Claim:​ M​L​ accepts x iff F​x​ is satisfiable.
Proof:
(=>)
Suppose M​L​ accepts x.
Then, there exists a sequence of configurations C0, C1, …, Cl s.t.

- C0 is the initial configuration, C0 = Q0x
- Ct ⊢ Ct+1 ∀ t∈[0..l-1]
- Cl is the accepting configuration, Cl = Qa
- l ≤ p(n).

The contents of the table suggest a truth assignment that satisfies F​x​.

(<=)
Suppose F​X​ is satisfiable.
That means that there exists a truth assignment that makes F​X​ true.
This truth assignment defines the rows of the table that correspond to an
accepting computation.
Each row corresponds to a configuration of M​L​. (Group 1)
The first configuration is the initial configuration of M​L​ on x. (Group 2)
The last configuration is an accepting configuration. (Group 3)
Each configuration follows from a previous by a legal move of M​L​. (Group 4)

The reduction is polytime because the length of F​x​ is polynomial w.r.t |x| = n
Group 1’s Formula is O(p​3​(n)).
Group 2’s Formula is O(p(n)).
Group 3’s Formula is O(1).
Group 4’s Formula is O(p​2​(n)).
Furthermore, each formula has size O(1).
|F​x​| = O(p​3​(n)) is polynomial w.r.t to |x|.

Examples of Other NPC Problems:
- We're going to prove that other problems, X, are NPC by showing SAT ≤​p​ X.
- However, before we do this we need to show that SAT is still NP C even if we restrict

some formulas in a syntactic sense.
- Definition:​ F is in ​Conjunctive Normal Form (CNF)​ iff:

a. It is a ​literal​. A literal is a variable or the negation of a variable. OR
b. It is a conjunction of ​clauses​. A clause is a literal or a ​disjunction​ of literals.

I.e. CNF is an ∧ of ∨s, where ∨ is over variables or their negations (literals). An ∨ of
literals is also called a clause.

E.g. The following formulas are in CNF:
￢X → Is a literal
￢X ∧ ￢Y → Is a clause because it is a disjunction of 2 literals.
¬x​1​ ∧ (x​1​ ∨ x​2​) ∧ (¬x​1​ ∨ ¬x​3​) → Is a clause because there are disjunctions of literals.

E.g. The following formulas are not in CNF:

CSCC63 Week 9 Notes
5

￢(X ∨ Y) since an OR is nested within a NOT.
- Note:​ Every formula can be equivalently written as a formula in CNF.
- CNF-SAT:
- Theorem 9.2:​ CNF−SAT ∈ NPC.

Proof:
F​x​ is almost CNF.
The exception is in group 4.
We have l​1​ ∨ l​2​ ∨ l​3​ ∨ (l​11​ ∧ l​12​ ∧ l​13​)) ∨ ... ∨ (l​k1​ ∧ l​k2​ ∧ l​k3​)) where l represent
literals.
This is in DNF not CNF.
However, using distributive laws this is logically equivalent to

The size of this formula is (3​k​)(k+3) where k ≤ |Q||Γ|2 = O(1).
So, (3​k​)(k+3) is still a constant. (3​k​)(k+3) = O(1).
Put F​x​ in CNF as above.
The resulting formula has size polynomial w.r.t |x|.
Therefore, CNF−SAT ∈ NPC

- Problem (3SAT):​ CNF−SAT for formulas where each clause has ≤ 3 literals.
Theorem 9.3: 3SAT ∈ NPC

Proof:

a. Proof that 3SAT ∈ NP:
3SAT is a specific case of SAT which is in NP.
Hence, 3SAT is in NP.

b. CNF−SAT ≤​p​ 3SAT:
Given any CNF formula F = C1 ∧ C2 ∧ ... ∧ Ck where Ci is a clause, construct
in polytime a 3CNF formula F’ = C’1 ∧ ... ∧ C’k.
F’ is satisfiable iff F is satisfiable.
C’j is a 3CNF formula.
|C’j| = O(|Cj|)
If Cj has at most 3 literals, C’j = Cj.
If Cj = l1 ∨ l2 ∨ … ∨ lm, where m ≥ 3, we introduce new variables z1, ..., zm−3.
Then, let C’j = (l1 ∨ l2 ∨ z1) ∧ (ㄱz1 ∨ l3 ∨ z2) ∧ (ㄱz2 ∨ l4 ∨ z3) ∧ ... ∧
(ㄱzm−3 ∨ lm−1 ∨ lm).
We are using Zi to chain the li.
C’j is satisfiable iff Cj is satisfiable.
Hence, F’ is satisfiable iff F is satisfiable.
|F’| = O(|F|) → CNF−SAT ≤​p​ 3SAT

- Fact:​ 2SAT ∈ P

CSCC63 Week 9 Notes
6

- Problem (IS):
Instance: ⟨G, k⟩ where G = (V, E) is an undirected graph and k ∈ Z​+​.
Question: Does G have an independent set V’ ⊆ V such that |V’| ≥ k?

Theorem 9.4:​ IS ∈ NPC

Proof:

a. Proof that IS ∈ NP:
We have done this in lecture 8.

b. Proof that 3SAT ≤​P​ IS:
Given 3CNF formula F, construct (in polynomial time in |⟨F⟩|), an undirected
graph G = (V, E) and k ∈ Z​+​ s.t. F is satisfiable iff G has an IS of k nodes.
Let F = C1 ∧ ... ∧ Cm.
Let X1, …, Xm be variables in F.
Cj = (l​j​

1​, l​j​
2​, l​j​

3​) where l​j​
t​ is a literal.

E.g.
Suppose we have the formula F = (x ∨ y ∨ ㄱz) ∧ (ㄱx ∨ y ∨ z) ∧ (x ∨ ㄱy
∨ u) ∧ (ㄱu ∨ ㄱy ∨ ㄱz).
For each clause construct a triangle.

Selecting a node is equivalent to saying that the truth assignment for that literal is
true.
E.g. In the first triangle, if we choose ㄱz, we’re saying that ㄱz is true, meaning
that z is false.
We must restrict not being able to choose opposing literals (x and ㄱx) by
drawing an edge between them.
This is because by choosing x in 1 triangle and ㄱx in another triangle, we’re
saying that we want x to be true in the first triangle and ㄱx to be true in the
second triangle. This will cause a contradiction.
This is shown in the picture below.

CSCC63 Week 9 Notes
7

k = 4 is the number of clauses we have.

In general,
G = (V,E) where

V = {C​j​
1​, C​j​

2​, C​j​
3​ | 1 ≤ j ≤ m}

E = {{{C​j​
1​, C​j​

2​}, {C​j​
2​, C​j​

3​}, {C​j​
3​, C​j​

1​} | 1 ≤ j ≤ m} ⋃
 {{C​j​

t​, C​j’​
t’​} |1 ≤ j ≠ j’ ≤ m, 1 ≤ t, t’ ≤ 3}} s.t. l​j​

t​ and l​j’​
t’​ are opposite literals

 of the same variable.
k = m

Claim:​ F is satisfiable iff G has IS of size k = m.

Proof:
(=>)
Suppose F is satisfiable.
Let τ be a truth assignment that satisfies F.
τ makes true some literal, say l​j​

tj​ of every clause Cj 1 ≤ j ≤ m, 1 ≤ tj ≤ 3.
Then {C​1​

t1​, C​2​
t2​, ...C​m​

tm​} is an IS of G of size m = k.
They belong to different triangles and there are no edges between them.
If there is an edge between 2 of them, say C​i​

ti​ and C​j​
tj​, then they are opposite

literals of the same variable. Hence, τ would make one of them true and the other
false. However, we are only choosing the literal that τ makes true, so we can’t
choose both C​i​

ti​ and C​j​
tj​. Hence, there cannot be any edges between any 2

(C​x​
tx​, C​y​

ty​)​ ​in {C​1​
t1​, C​2​

t2​, ...C​m​
tm​}.

CSCC63 Week 9 Notes
8

(<=)
Suppose G has an IS, V’, of size m.
Because of the triangles, V' has exactly one node from each triangle.
Let V’ = {C​1​

t1​, C​2​
t2​, ..., C​m​

tm​}.
We will define truth assignment τ as:

If l​j​

tj​ = x, then we make x = 1 (x = true).
If l​j​

tj​ = ￢x, then we make x = 0 (x = false), so that ￢x is true.
This is well-defined, meaning that there are no contradictory rules, that satisfies F
because it solves every clause.

Remains to show that construction of ⟨G,k⟩ can be done in polynomial time in
size of ⟨F⟩.
|V | = 3m
|E| = 3m + 3m(m − 1) = O(m​2​).
Therefore, the size of ⟨G,k⟩ is polynomial w.r.t |⟨F⟩|.
Therefore, ⟨G,k⟩ can be constructed from ⟨F⟩ is polynomial.
Therefore, 3SAT ≤​P​ IS.
Therefore, 3SAT ∈ NPC.

- Problem (CLIQUE):
Instance: ⟨G,k⟩ as in IS.
Question: Does G have a clique of size k?
A ​clique​ is a subset of nodes, V’, s.t. there exists an edge between any 2 pairs of nodes
in V’. V’ ⊆ V.

Theorem 9.5:​ CLIQUE is NPC.
IS ≤​P​ CLIQUE.
Given G = (V, E), construct ￢G = (V, ￢E).
￢G is the complement of G.
￢G has an edge between 2 nodes iff G does not have an edge between those 2 nodes.
Therefore G has an independent set iff ￢G has a clique.

- Problem Vertex Cover (VC):
Instance: ⟨G,k⟩ as before.
Question: Does G have a vertex cover of size k?
A ​vertex cover​ is a set of nodes (V’ ⊆ V) s.t. every edge has at least one endpoint in V’.

Theorem 9.6:​ VC ∈ NPC
G = (V, E) has an IS of size K iff G = (V, E) has a VC of size n − k, where n = |V|.
If something is an IS, its complement must be a VC.

